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ABSTRACT 

Support interference free drag, lift and pitching moment measurements on a range of slanted-base 

ogive-cylinders have been made using the NASA Langley 13 inch Magnetic Suspension and Balance 

System. Typical test Mach numbers were in the range 0.04 to 0.2. Drag results are shown to be in 

broad agreement with previous tests with this configuration. Measurements were repeated with a 

dummy sting support installed in the wind tunnel. Significant support interferences were found at all 

test conditions and are quantified. Further comparison is made between interference free base pressures, 

obtained using remote telemetry, and sting cavity pressures. 
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NOMENCLATURE 

Symbol 

A 

“1- “10 

CD 

CL 

C~~ 

cpb 
D 

FX 

FZ 

I1- I5 

ID 

IL 

IP 
M 

P 

ReL 
P 

MSBS 

Meaning 

2 Area, m 
Calibration coefficients, N/A 2 or Nm/A 2 

Drag coefficient, based on frontal area 

Lift coefficient, based on frontal area 

Lift coefficient of rear portion of vehicle, based on frontal area 

Base pressure coefficient 

Drag, N 

Force in x direction (-Drag), N 

Force in z direction (-Lift), N 

Current in electromagnets 1-5 

“Drag” current, = 

“Lift” current, = I1 + I2 + I3 + Iq 

“Pitch” current, = I1 - I2 + I3 - I4 

Mach number, also pitching moment, Nm 

I5 

Pressure, N/m 2 

Reynolds number, based on length of zero degree base model (11.193 inches) 

J( 1-M2) 

Magnetic Suspension and Balance System 

... 
Vll l  



1. INTRODUCTION 

Support interference is a significant problem in wind tunnel testing. The majority of test results 

are influenced to some extent by the intrusion of mechanical supports into the flow. Numerous 

variations of support design are in use, encompassing many types of testing over a wide speed range. 

The principal type of support used in the transonic, supersonic and hypersonic speed regimes, and the 

primary focus of this report, is the rear mounted sting. 

Some information concerning the magnitude of sting interference on drag and base pressures is 

available for axisymmetric (generally cylindrical or truncated boat-tail) bases. Data for non- 

axisymmetric bases is rather sparse. The slanted-base models chosen here provide an opportunity to 

assess sting interference effects over a family of geometries, ranging from axisymmetric to highly non- 

axisymmetric. 

The original interest in slanted-base models was as an analogy to the flow over the sloping rear 

windows of hatchback and fastback automobiles (Figure 1). For the work reported here, the model is 

conceptually “inverted” and argued to be an analogy to the flow under the upswept rear fuselage of a 

transport aircraft. Design constraints are similar in both cases - namely minimum drag and maximum 

utilization of enclosed volume. The former tends to suggest slender, tapering base geometries while the 

latter suggest rather blunt geometries. Rather perversely, automobiles frequently show minimum drag 

with a blunt base. This is due to the formation of intense trailing vortices from the corners of the 

sloping rear window of fastback designs, leading to high induced drag. 
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FTGURE 1 Slantcd-Ba.qe Acrodvnamics. Automobile lumer)  and aircraft (lower) 
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2. AERODYNAMIC STING INTERFERENCE 

For the purposes of this report, the aerodynamic interference of the sting on the model is divided 

into three components (Figure 2): 

(a) “Overall” flow disturbance. Physical blockage downstream of the model introduces a 

pressure gradient into the flow in the region of the model. If the sting is a t  angle-of-attack or if the 

model’s wake flow involves strong crossflow velocities (relative to the sting) then flow inclinations will 

also be induced in the region of the model. 

(b) “Local” flow disturbance. Boundary layer development, particularly on the aft regions of 

the model will be affected by the presence of the sting, partly due to (a) above. The wake geometry 

and structure are likely to be substantially affected, due to the physical presence of the sting within, or 

close to, the wake. 

(c) Geometrical distortion of the model. In every case, the geometry of the aft region of the 

model is corrupted to accomodate the sting. This corruption includes, but is not limited to, truncation 

of the base and/or creation of a sting cavity. 

2.1 STING INTERFERENCE CORRECTION TECHNIQUES 

Aerodynamic data must be adjusted or corrected for sting interferences. Repeat testing, with 

alternative sting arrangements and metric divisions of the model, is a viable and apparently the most 

common method of extracting the interferences [l]. This approach can unfortunately lead to 

considerable complexity, with several test sequences required to extract the interference terms, due to 

the fact that no support system has zero overall interference [2,3]. It should be noted that some model / 

geometries, particularly slender vehicles, may not lend themselves to alternative support arrangements. 

Further, if the alternative support is of the blade type, then testing is restricted to a small range of 

sideslip angles. 

Analytic or empirical correction of test results is often attempted, though is fraught with its own 

difficulties. Overall flow disturbances ((a) above) can be corrected for, at least approximately, by 

estimating the far-field of the support system’s flow using linearized methods, then correcting the 

model’s angle of attack, drag due to longitudinal buoyancy and so on. Straightforward calculations 

may be possible where the support is slender and aligned with the flow [4]. There is increasing evidence 

of rather elaborate analysis being undertaken, involving panel methods and the like, particularly where 

the support is of a more complex geometry [5]. The reliability of all these corrections rests entirely on 

the model and sting flows being weakly interacting, that is to say, the support-induced flows must 

represent a small perturbation of the overall flowfield around the model. 
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When considering local flow disturbances, ((b) above), this assumption is invalid. If important 

details of the model’s flow are strongly affected by the presence of the support, then simple 

“corrections” in the traditional sense are impossible. Rather, a “calculation” of a t  least part of the 

flowfield is necessary, sometimes carried out implicitly by subtracting out the experimental base drag, 

then adding a predicted base drag term [6] .  Empirical data to assist in predicting or adjusting 

measured base pressures is rather scarce. 

If aerodynamic results correspond to significantly incorrect model contours ((c) above), then 

traditional corrections may again be impossible. Some concern is evident on this point, particularly in 

high dynamic-pressure facilites [7]. 

Contemporary test data reduction therefore generally relies on geometrical distortions and/or 

local flow disturbances being small or of negligable influence. Overall flow disturbances are minimized 

with correct support design, permitting reliable correction for residual interferences in this category. 

2.2 BASE PRESSURE CORRECTIONS 

Corrections could be applied to sting cavity or model base pressures from conventional tests, if 

adequate reference data was available. However, a modest literature review indicates that, even for 

axisymmetric bases, substantial differences exist between experimental measurements from different 

sources. Similar comments apply to analytic or numerical predictions. A selection of results is 

assembled in the Table below. Whilst it is freely admitted that the model geometry and test Reynolds 

and Mach numbers cover a wide range, no coherent pattern can be recognized. Presuming that all 

experiments were conducted properly, the conclusion must be drawn that base pressure is at least 

somewhat sensitive to factors such as forebody geometry, test Reynolds and Mach numbers, boundary 

layer state, tunnel turbulence and so on. Thus, in order to reliably correct base pressures from 

conventional tests, specific base pressure evaluation tests might be required. Analytic or numerical 

methods do not yet seem to accurately reproduce existing reference data, therefore cannot be generally 

applied. 

Little literature has been found dealing with non-axisymmetric geometries, by any means, apart 

from those tests specific to the slanted base problem. 
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TABLE A - Ogive-cylinder base pressure coefficients (zero base slant) 

Ref. ReL M Comments 

0.15 
0.13 
0.21 
0.23 

0.12 

0.12 

0.13 
0.33 

8 
8 
9 
9 

10 

11 

12 
13 

ESOOk Low 
73 

11200k Low 
n 

Range Low 

Range Low 
Range Low 

800k 0.6 

Wire supports, centerline 
91.5% radial station 
Strut supports, centerline 
45% radial station 

Empirical, various data 

Blade support 

Empirical, various data 
True predictive method, depends on 
boundary layer B 

2.3 STING INTERFERENCE WITH SLANTED-BASE MODELS 

For the tests reported herein, the geometrical distortion of the base is limited to the creation of a 

simple sting cavity. The sting is aligned with the tunnel axis and the models are non- or weakly lifting, 

so the overall flow disturbance caused by the sting is principally a weak longitudinal pressure gradient. 

The effects of the local flow disturbances, particularly disturbance of the model’s wake, are thus 

highlighted. 
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3. EXPERIMENTAL DETAILS 

3.1 MODELS 

Slanted-base ogive-cylinder models have been extensively tested by Morel [8] and others [9,14]. 

The principal interest in this geometry is the sudden change of wake structure, with corresponding 

large change in drag coefficient, occurring for small changes of base slant angle, around 45 degrees 

slant. A summary of important previous results is shown in Figure 3. The models used for this research 

correspond to Morel’s geometry and are illustrated in Figure 4. Additional details can be found in 

Appendix A. The models are manufactured from aluminum alloy, with enclosed low-carbon iron cores. 

Considerable care was taken to ensure geometric fidelity and high quality of surface finish. 

Interchangeable bases permit a range of base slant angles to be tested. One model is used exclusively 

for force and moment tests, while an alternate, of nominally identical aerodynamic lines, is equipped 

for direct measurement of base pressures. For all tests, the models are suspended magnetically with no 

mechanical support of any kind. Previous experiments with these models (magnetically suspended) 

have established their basic aerodynamic characteristics and are fully reported elsewhere [15,16]. 

3.2 NASA LANGLEY 13 INCH MSBS 

The NASA Langley Research Center (LaRC) 13 inch Magnetic Suspension and Balance System 

(MSBS) has been developed from a system constructed a t  the Arnold Engineering Development Center 

in the 1960’s [17], though little of the original hardware remains in use. The position and attitude of 

the model is detected optically [18], position signals are fed to a digital control system [19] with the 

electromagnet currents supplied by SCR power amplifiers. The wind tunnel is a low speed, open circuit 

design [20], illustrated in Figure 5, with a maximum Mach number of 0.5. An aluminum alloy dummy 

sting and support strut, shown in Figure 6, can be installed downstream. 

3.3 PRESSURE TELEMETRY 

A single channel onboard pressure telemetry system had been developed previously [16,21] to 

permit measurement of interference-free base pressures. Due to the low dynamic pressures encountered 

in these tests, this proved to be a quite challenging measurement. That is to say, freestream static 

pressure and model base pressure are both roughly atmospheric and the difference between them is 

small. With no direct connection between the model and the outside world, great care must be taken to 
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overcome the “subtraction of elephants” problem. In the original configuration, a sensitive differential 

pressure transducer was installed in the model with the backside vent tube filled with inert gas and 

sealed. The gas reservoir served as the pressure reference. Unfortunately, the temperature of the gas 

chamber could not be adequately stabilized in normal testing, leading to acute temperature sensitivity. 

For the slanted-base tests, a similar differential transducer was installed with the backside vented 

to a total pressure tap in the extreme nose of the model. This tap is just visible in Figure 4. 

Temperature sensitivity was much improved, although the electronics package is still noticeably 

deficient in this regard. Base pressures are now derived by subtraction of two smaller elephants, namely 

the difference between base static and tunnel total pressure compared to the difference between local 

static and tunnel total. 

Details of the design and installation of the telemetry system are given in Figure 7. It has been 

found that a fresh battery pack (5 E41 cells) will give well over 2 hours of valid data. As the batteries 

near the end of their discharge, the rapid drop in terminal voltage causes a relatively rapid drift of the 

wind-off (zero differential pressure) frequency. Wind-off zeros are therefore taken before and after each 

“run” as a precautionary measure. 

3.4 TEST SEQUENCES 

Three separate test sequences, illustrated in Figure 8, permit complete identification of interference 

effects: 

(a) Magnetically suspended. With no mechanical intrusion into the flow, true support 

interference free data is obtained. These measurements are taken to be the “reference” data in this case, 

since all further tests involve the same model and test section set-up. The results shown in this paper 

are all-new tests, though essentially repeats of previous MSBS data [16]. It should be noted that some 

discrepancies between MSBS results and previous mechanically-supported data have been identified and 

examined [16]. 

(b) Magnetically suspended with dummy sting. The rear portion of the model is modified to 

provide a representative sting cavity. The model is then magnetically suspended with a dummy sting 

protruding into the cavity, but not in contact with any portion of the model. Sting cavity pressure is 

measured via a tapping through the dummy sting. 

(c) Magnetically suspended with base pressure telemetry. A model equipped with onboard 

telemetry, with no dummy support, establishes interference free base pressures. 
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4. DATA REDUCTION 

4.1 FORCE AND MOMENT CALIBRATION OF MSBS 

Previous analysis [16] has indicated that the drag and lift forces and pitching moment for a model a t  

zero angles of attack and sideslip in the 13 inch MSBS can be expressed as follows: 

where IL = I1 + I2 + I3 + I4 ; Ip = I1 - I2 + I3 - I4 (2) 

The numbering sequence for the electromagnet currents is shown in Figure 9. Coefficients a1 through 

al0 are constants found by multiple regression fitting of calibration data. A linear method is used, in 
the dummy variables {IL 2 }, {'LID} etc. (Supercalc 5' routine). This may not be the best approach 

since the equations are fundamentally non-linear in nature, but appears to function satisfactorily for 

the ranges of variables so far encountered. 

In practice the electromagnet current "zeros" do not repeat exactly from run to run, for a variety 

of reasons, including slight position and attitude shifts. All current measurements are therefore 

corrected as follows: 

I = I  + (ID - I  1 
calibration zero Dwind-off Dcorrected Dmeasured 

I = I  + (IL - I  1 
calibration zero Lwind-off Lcorrected Lmeasured 

1 
calibration zero - "wind-off 

I = I  + (1' 
'Corrected 'measured 

(3) 

Again, this may not be the best procedure but appears to function quite satisfactorily a t  the present 

time. 

A representative model (zero degree base) was  suspended and loaded at three stations, as shown 

in Figure 10. Forces and moments encompassed the range of magnitudes encountered in aerodynamic 

testing. However, pitching moments of both signs were applied during calibration (only nose-down in 

aerodynamic testing) and only downforces were applied (upforces in aerodynamic testing). Nevertheless, 
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the resulting calibration is thought to be reasonable, especially since drag is the most important degree 

of freedom in this case. 

TABLE B - Calibration ranges 

Force/moment component Approximate range Comments 

Drag 0-0.75N Positive downstream 

Lift 0-1.25N Applied downwards 

Pitching moment fO.06Nm Nose up and nose down 

Results of the calibration are as follows: 

F, = 0.0879 + 19.405*10-61L2 + 841.578*10-61LID +331.855t10'61D2 +103.266*10-61LIp (4 1 

- where currents are in Amps and force in Newtons. The principal term during normal testing is ILID. 

Typical values of current during aerodynamic testing were: 

IL N 80 (weak variable) 

-3 (wind off) < ID < 10 (high q cases) 

-10 (wind off) < Ip < -15 (high slant angles, high q) 

The leading constant in Equation 4 represents an accumulation of zeroing errors during calibration, 

imperfect modelling of MSBS behaviour by Equation I and so on. The wind off drag forces predicted 

by direct application of Equation 4 tend to be non-zero but small. Other drag forces are corrected by, 

the wind off measurement : 

D - 
Dcorrected - Dpredicted - predictedwind-off 

Calibration equations for lift force and pitching moment are deduced and handled similarly : 

6 6 Fz = -7.062 + 1135.7*10-61L2 + 561.887*10- ILID - 185.100*10-61p2 - 7.062*10- IpID 

The IL2 term is dominant. The leading constant is primarily due to the deadweight of the model; also 

residual errors as discussed above. 

3 6 6 M = 1.227*10- + 128.908*10- IpIL + 17.578*10- IpID 
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The IpIL term is dominant. Again, the leading constant is related to the mass distribution of the 

model, its fore-and-aft location in the wind tunnel and other effects. Moment is expressed in Newton- 

meters. 

4.2 CORRECTIONS TO AERODYNAMIC DATA 

Again following [16], various corrections are applied to the tunnel conditions and drag forces. No 

corrections are made to lift forces or pitching moments. 

Buovancv 

I dPs = v  - * buoyancy dx 

where V' is an effective model volume, found to be 1.3% greater than the actual volume, using the 

integral expressions in [22]. The static pressure gradient in the wind tunnel has been carefully measured 

with the test section empty and is expressed as follows: 

@ 2: (2379.0 M3 + 2477.81 M2 + 110.954 M )  Pa/m dx 

Blockage 

A solid body blockage factor is calculated using formulae in [23], as detailed in [16]: 

3 -3 p c S  = 7.576 x 10- 

A wake blockage factor is similarly found from [24]: 

cw = 0 . 2 5 ~  Amodel ( 1+0.4M2) cD 
Atest section p2 

A corrected Mach number is derived as follows: 

- ( l + ( l + + l  7-1 2 )(cs+cw)) 
Mcorrected - Muncorrected 

An appreciation of the magnitudes of the corrections is given in the following Table: 
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TABLE C - Approximate magnitude of drag coefficient corrections 

Base Nominal CD Nominal Mach %C 
Dbuoy 

%C 
Dblock 

O0 0.2 

0.2 

4 5 O  0.3 

0.6 

0.6 

0.04 

0.2 

0.04 

0.18 

0.04 

8% 2% 

6% 2% 

5% 2% 

2% 2% 

3% 2% 

All corrections relative to uncorrected measurement, all subtractive 

4.3 BASE PRESSURES 

A static calibration of the transducer/telemetry package is performed prior to magnetically suspending 

the model. No shift of calibration due to magnetic fields has been detected. Typical results are: 

Frequency = 10,849 - 1.123Ap Hz (Ap in Pa) 

The model must be removed from the tunnel to change active pressure taps. Unused taps are taped 

over in the conventional manner. The problem of transducer zero shifts with temperature is minimized 

by operating only when the (outside) ambient air temperature is in the range 70°-800F. This results in 

minimal model temperature change during removal from the tunnel for change of pressure taps. 

The on-board transducer is referenced to ptotal, which is assumed constant through the test / 

section. Thus: 

Phase = Ptotal - APtransducer 

The static pressure in the test section is derived from the tunnel total and a static pressure ring just 

upstream of the test section. A correction is made to the latter reading based on previous empty tunnel 

calibrations. 

A further correction is made to account for the longitudinal pressure gradient in the test section, 

detailed earlier. Thus the numerator of the base pressure coefficient is calculated as the difference 

between actual base pressure and tunnel empty local freestream static. The denominator carries a 
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blockage correction via the corrected Mach number. Further refinement of this pressure correction 

technique is possible. 

Sting cavity pressure is measured via the central tap and a Datametrics 572 Barocell. This 

measurement is reduced to a pressure coefficient in the same manner as discussed above. 

4.4 DATA ACCURACY 

All electromagnet currents can be measured to an accuracy of around f1OmA (1mA instrument 

resolution). Measurements are an average of one hundred samples, taken under qua.si steady-state 

conditions. This results in a typical uncertainty in drag force of less than 0.002N (using Equation 4). 

Resulting uncertainties in representative drag measurements are shown in the Table below : 

TABLE D - Drag uncertainties 

Base Nominal Mach Drag (N) AD %uncertainty 

30° 0.1 0.138 0.002 1.4% 

30' 0.2 0.525 0.002 0.4% 

50' 0.1 0.326 0.002 0.6% 

50' 0.16 0.721 0.002 0.3% 

The principal items of wind tunnel data are the total and dynamic pressures, measured with 

Datametrics 572D Barocells. Typical quoted accuracy is of the order of 0.2%, all sources. This will 

result in a Mach number uncertainty of the order of 0.1%. Additional errors accumulate due to 

stagnation temperature, imperfect calibrations and so forth, but are innacuracies in measurement of 

generally rather small. 

Analysis of the effects of naccurate estimates of a 1- a is very complex and is demanding of 

much further study. The correction of measured currents and predicted forces and moments by the 

wind-off zeros has the effect of cancelling some apparent error. Standard errors of the terms derived 

from the regression analysis are known and are recorded overleaf for reference : 
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~~ ~ 

"1 "2 "3 "4 a5 Parameter . 

Value*106 19.405 841.578 331.855 103.266 1135.723 

Std. error*lO 5.689 12.464 138.118 7.684 12.999 

"6 "7 "8 "9 "10 Parameter 

561.887 -185.100 -7.062 128.908 17.578 6 Value*lO 

Std. error*lO 53.375 -83.013 -364.239 2.502 11.523 

It is seen that the primary terms in each calibration equation (a2, a5, a9) are relatively accurately 

known. The determination of some of the other terms is poor. 

Error bars are not plotted on any of the accompanying graphs. This is due partly to the 

somewhat experimental nature of the MSBS calibration procedures employed. Further, examination of 

the figures in the context of the above analysis will indicate that the magnitudes of the aerodynamic 

effects being examined are so large that there can be no real doubt that the general trends are properly 

represented. 

Considerable attention is also paid to the accuracy of drag measurements in the 13 inch MSBS in 

reference 24. 
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5. EXPERIMENTAL RESULTS 

5.1 GENERAL REMARKS 

Models were suspended close to the centerline of the wind tunnel, at nominally zero angles of 

attack and sideslip. The “clean” model is thought to exhibit principally laminar boundary layers, with 

transition just beginning to move forward from the base at the higher Reynolds numbers tested. The 

maximum Mach numbers (typically 0.2) were well below the tunnel limit (0.5), principally due to 

problems with the electromagnet power supplies. Most tests were repeated with transition fixed roughly 

2cm downstream of the ogive-cylinder junction by a ring of No.60 grit. Some check runs were made 

with coarser grit to ensure tripping at lower Reynolds numbers. Corrections have been applied to 

account for model and wake blockage and longitudinal buoyancy, following the methods outlined in 

Section 4. Corrections for sting-induced buoyancy or blockage have not been applied, but would be 

extremely small. Base and sting cavity pressures have been corrected for model blockage and 

longitudinal pressure gradient effects. 

5.2 DRAG RESULTS 

--- Low base slant angles 

Slight reductions in drag coefficients with increasing Reynold’s number is noticeable, particularly 

for the fixed transition cases, consistent with usual boundary layer behaviour. Drag coefficients for the 

zero degree base, with and without the dummy sting present, are shown in Figure 11. The magnitudes 

of the discrepancies, presented in terms of required corrections to sting-supported results, are clarified 

in Figure 12. Similar data for the 30 and 40 degree bases are shown in Figures 13 through 16. It is clear 

that significant discrepancies exist between sting supported and interference free data. The signs and 

magnitudes are, however, broadly consistent with previous measurements for ogive-cylinders, that is, 

somewhat lower drag with sting on (for instance see [l l]) .  

The mechanism for the drag reduction is thought to be the reduction in the required expansion of 

the flow surrounding the wake downstream of the base, since part of the flow area is occupied by the 

sting. This would result in slightly higher (less negative) base pressures in the sting-on case. 

- 45 degree base 

Previous MSBS tests [15,16] had revealed an unusual hysteretic behaviour of the wake for this 

base slant. As ReD for the “clean” model increased past 60,000 or so, the wake structure suddenly 

changed from a quasi-symmetric pattern, characteristic of low slant angles, to a longitudinal vortex 
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flow, characteristic of higher slant angles. The change in drag is dramatic, more than a doubling in 

value. Also, once the vortex flow is established, it persists even as ReD is reduced below the “critical” 

value. It is believed, though not yet experimentally confirmed, that this change in wake structure is 

linked with the onset of natural transition a t  the model’s base or in the free shear layers developing 

just downstream. Further, the fact that the effect had not previously been detected is thought to be 

due to boundary layer tripping by upstream wire or strut attachments [16]. 

It had been found that tripping the boundary layer prevented this change in structure from 

occurring. Further testing has now revealed that the phenomena is sensitive to the grit size employed. 

It is known (see Section 6.1) that the No.60 grit normally used is too fine to ensure complete transition 

a t  the lowest Reynold’s numbers. Repeat sweeps up and down through the “critical” Reynold’s number 

with this size grit sometimes exhibited the wake flow change, sometimes not. A coarser grit size proved 

more consistently effective in inhibiting the formation of the vortical wake. Note that no change from 

one wake structure to another was  ever observed above the critical Reynold’s number, whereas 

spontaneous and random reorganization of the wake has been observed below the critical Reynold’s 

number (Figures 17-19). 

Not surprisingly, the introduction of a sting into the wake completely disrupts the changes in 

structure. With the sting present, the wake is always a quasi-symmetric closure, with no tendency to 

form a vortical wake under any condition tested. The discrepancies between sting supported and 

interference free data thus become strong variables with large peak magnitudes, illustrated in Figures 

17-20. Drag is always lower with the sting present, due to the incorrect wake flow. 

High slant angles 

The interference free wake for these slant angles is a quasi-steady longitudinal vortex flow. This 

flow pattern produces low base pressures (see Section 5.3), high drag and significant lift forces and 

pitching moments (see Section 5.4). It is known that the behaviour of wake vortices can be strongly 

influenced by the presence of downstream obstructions [25]. This is reflected in the results for the 50 

and 60 degree bases, shown in Figures 21-24. At low Reynolds numbers with the sting present, the drag 

coefficient of the “clean” 50 degree base model remains fairly low, indicating a quasi-symmetric wake 

closure. At some critical Reynolds number, the wake changes spontaneously to a longitudinal vortex 

flow, with corresponding increase in drag. No hysteresis has been detected. However, the drag 

increment in vastly less than that observed with the corresponding phenomena for the 45 degree base, 

interference free. Due to the rapid fall in drag coefficients for the interference free model beyond the 

critical angle, drag coefficients of the 60 degree base model are similar for all four cases tested. 

It should be noted that the increment in drag between fixed and free transition, consistently 

observed for the lower slant angles, is not seen with the higher slant angles, particularly interference 

free. Since there must logically be an increment in forebody skin friction, suspicions are aroused as to 
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whether the base drag changes by a similar increment, but in the opposite sense. This point is resolved 

in Section 5.3. 

A 70 degree base was fabricated late in the test program. Plexiglas was used instead of aluminum 

to reduce weight and consequent undesirable nose-up pitching moments. Limited results are shown in 

Figure 25. 

5.3 BASE AND STING CAVITY PRESSURES 

Base pressure data has only been taken for slant angles of O o ,  40°, 45’and 50°, due to the 

laborious testing procedure required with the single channel telemetry system. Sting cavity pressures 

were recorded for all base slants. 

- Zero degree base 

Base pressures as a function of Reynold’s number for the zero degree base are shown in Figure 26. 

No distinct trend is apparent. Examining the variation with radius, there is slight evidence of lowest 

base pressures (most negative Cp’s) in the center of the base, shown in Figure 27. No significant 

dependance on boundary layer state has been detected (Figure 28). Sting cavity pressures are 

noticeably higher than base pressures, corresponding to the observed drag differences between the two 

cases (Figure 29). The reader is cautioned against comparing the magnitudes of the pressure differences 

against the differences in drag, since the pressures on the annular region surrounding the sting cavity 

are not likely to be exactly equal to the cavity pressure. 

- 40 degree base 
I 

Base pressures for the 40 degree base are substantially non-uniform, shown in Figures 30 and 31. 

There is some evidence that significant differences may exist with transition fixed, shown in Figures 31 

and 32. Comparison between base and sting cavity pressures is shown in Figure 33, again corresponding 

to the observed drag differences. 

- 45 degree base 

The transition free base pressures for the 45 degree base, shown in Figure 34, dramatically 

illustrate the wake hysteresis observed in Section 5.2. The apparently steep variations of pressure 

coefficients with Reynold’s number above the critical value are thought to be genuine, but may be due 

to slight shifts in the vortex locations, rather than actual changes in vortex strength or structure. Data 

below the critical Reynold’s number should be considered unreliable, due to the very small pressure 

differences encountered. Figure 35 illustrates the distinctive pressure ‘‘footprint” of the vortices, with 
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very high suctions in the region of the vortex cores. Tripping of the boundary layers inhibits formation 

of the vortical wake, confimed by pressure measurements shown in Figure 36. Figure 37 nevertheless 

again shows a substantially non-uniform pressure distribution. Comparison to sting cavity pressures 

becomes meaningless, with no sensible similarity. Sting cavity pressures are thus shown separately in 

Figure 38, where differences between fixed and free transition cases are noticeable. 

- 50 deeree base 

Base pressures for the 50 degree base are shown in Figures 39 and 40. A reduction in the strength 

of the trailing vortices (corresponding to a reduction in base drag) with transition fixed was suspected 

in Section 5.2 and is dramatically confirmed in Figure 41. Sting cavity pressures again bear no relation 

to base pressures, although Figure 42 again shows substantial differences between fixed and free 

transition runs. Spontaneous formation of some form of vortical wake for the free transition case is also 

noted. No hysteresis has been detected in this instance. 

5.4 LIFT FORCES AND PITCHING MOMENTS 

Lift forces are non-dimensionalized by the model cross-sectional area. Pitching moments are non- 

dimensionalized using the same reference area, also the half-length of the zero degree base model 

($*ll.l93inches). For the purposes of presentation of results, uDforce is considered positive lift, n ~ ~ e  

down moment is considered positive pitching moment, clarified in Figure 43. 

The zero degree base should experience no lift or pitching moment. The residuals shown in Figure 

44 are therefore an indication of limitations in the accuracy of the calibration procedures. The choice of 

reference area results in apparently large numeric values of CL and CM, though it must be emphasized 

that the forces and moments involved are typically quite small. It is also noted that Figure 44 is a 

different “run” from those used for previous results. 

Results for the 40 degree base, shown in Figure 45, indicate relatively constant values of CL and 

CM, with consistently lower values sting-on. This corresponds to the drag variations shown earlier in 

Figure 15, presuming that the majority of all forces and moments arise due to base pressures. Figure 46 

again shows the characteristic hysteretic behaviour of the wake for the 45 degree base, first noticed in 

Figure 17. Results for the 50 degree base, shown in Figure 47, also confirm the previously observed 

weakening of the wake vortices with transition fixed. 
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5.5 DISCUSSION OF RESULTS 

Figure 48 shows a comparison of interference free drag coefficients to the original data by 

Morel([8], ReD=94,000). MSBS points are obtained by interpolation for each base slant. Agreement for 

the interference free cases is quite good a t  the higher slant angles. At the lower slant angles, it is 

supposed that partial boundary layer tripping was induced by Morel’s wire supports [16]. The critical 

slant angle was fractionally lower in the MSBS tests than had been previously reported. The apparent 

convergence of all results above the critical slant angle is again notable. 

With sting-on, the drag is relatively constant for all base slants (Figure 49). For most angles the 

drag is too low, although a t  the highest angle tested the reverse is true. The data may appear 

somewhat scattered, but the reader is reminded that some form of vortex formation is quite likely 

around the 45 degree slant angle. Thus the points may lie on two or more distinct trend lines, as in the 

interference-free cases. 

It is recognized that the use of a relatively massive sting support a t  subsonic speeds is rather 

unconventional. Thus the specific data presented herein might be regarded as unrepresentative of 

everyday interference problems. However, a t  transonic speeds, the use of some form of sting support is 

virtually universal and there is no reason to expect that interference phenomena should be confined to 

the subsonic regime. 
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6. EXPERIMENTAL DIFFICULTIES 

6.1 BOUNDARY LAYER TRIPPING AT LOW REYNOLDS NUMBERS 

It was found that No.60 grit was too fine to ensure proper tripping of the boundary layer a t  the 

lower Reynolds's numbers. This is illustrated in Figures 50 and 51, where data from several base slants 

has been assembled. This is presented as some indication of the sensitivity of the MSBS as a drag 

measurement tool. 

6.2 ROLL OSCILLATIONS 

The 13 inch MSBS is not equipped with any form of active roll control. Models are generally 

constructed such that their magnetic and mass centers are offset by some small amount, resulting in 

weak passive roll stiffness. Models with the higher base slants exhibited a roll oscillation at higher 

tunnel speeds which is thought to be analogous to the classical slender wing rock phenomena [as] .  That 

is to say, the pair of trailing vortices interact with each other to produce a periodic rolling moment. 

This phenomena prevented satisfactory measurements at higher speeds with the 50' and 60' bases. It 

is noted that under certain conditions, the roll oscillations diverged very rapidly, a t  other times, a limit 

cycle was observed. 

55 



0.4 

e c 0.3 
o 
0 
.- .- 
CC 
Y- 

o 0.2 0 
0 
m 
U 
L 

Oel t 

- 

- 

- 

0 

- - -  0 --a. 

0.4 

-+ S 0.3 
o 
0 
.- .- 
% 
Y- g 0.2 
0 
m 
U 
L 

0.1 

A Sting on, fixed transition, 60 grit 
O N o  sting, fixed transition, 60 grit 
0 No sting, fixed transition, 35 grit 

r 

- 

- 

- 

I I 

100 
0.0 I 

0 50 
ReD*l 0 -3 

FIGURE 50 - Zero degree base: Drag Coefficients at Low Revnold’s Numbers 

A N o  sting, 60 grit, 30 degree base 
O N o  sting, 60 grit, 40 degree base 
OSting on, 60 grit, 45 degree base 
OSting on, 60 grit, 50 degree base 

I I 

100 0.0 I 
- 0 50 

-5 ReD* 1 0 

FIGURE a - Draq Coefficients at Low Reynold’s Numbers 

56 



7. CONCLUSIONS 

Sting interference is detectable for all geometries and under all conditions tested. The magnitudes 

of the interference can be extremely large. Entirely different wake structures can exist with and without 

the sting present. 

Vortical wakes have been shown to be sensitive to the state of the oncoming boundary layer, with 

all areodynamic parameters consequently affected. 

The 13 inch Magnetic Suspension and Balance System can be used for measurements of multiple 

aerodynamic components. This is despite the fact that the system’s design is very poorly suited to this 

task (lack of electromagnet symmetry, freely magnetized iron cores) and despite many hardware 

problems. 
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Appendix A 

Model Construction Details 

Additional details of pressure model may be 
found in Reference 16) 
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Appendix B 

Plates 
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PLATE A - General View of MSBS 

PLATE B - Close-up of Test Section with Slanted-Base Model in Suspension 
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PLATE C - Slanted-Base Model with Dummy Sting Installed 

PLATE D - Close-up showing Sting Entry into Suspended Model 
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PLATE E - Set-up for Base Pressure Telemetry 
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